Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons.
نویسندگان
چکیده
BACKGROUND AND PURPOSE While polymorphonuclear leukocytes may contribute to the "no-reflow" phenomenon after focal cardiac and skeletal muscle ischemia/reperfusion, their contribution to acute focal cerebral ischemia is unresolved. We have examined the role of polymorphonuclear leukocytes in microvascular perfusion defects after focal cerebral ischemia/reperfusion in a baboon model of reversible middle cerebral artery occlusion with the anti-CD18 monoclonal antibody IB4, which inhibits neutrophil adherence to endothelium. METHODS Microvascular patency in the basal ganglia after 3-hour middle cerebral artery occlusion and 1-hour reperfusion (by india ink tracer perfusion) was quantified by computerized video imaging. Animals were randomized to receive intravenous IB4 infusion 15 minutes before reperfusion (n = 7) or to receive no treatment (n = 6). Binding of IB4 to baboon leukocytes was maximal within 5 minutes of infusion. RESULTS In the untreated group, a significant reduction in patency was observed in microvessels less than 30 microns diameter: mean percent reflow was 51% in the capillary diameter class (4.0-7.5 microns) and 39% in the precapillary arteriole and postcapillary venule diameter class (7.5-30 microns). Infusion of IB4 before middle cerebral artery reperfusion increased reflow in microvessels of all size classes, most significantly in those 7.5-30 microns (p = 0.049) and 30-50 microns (p = 0.034) in diameter. CONCLUSIONS These results suggest that CD18-mediated polymorphonuclear leukocyte-endothelium adherence contributes to no-reflow predominantly in noncapillary microvessels and at least partially to that in capillaries.
منابع مشابه
P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion.
BACKGROUND AND PURPOSE Polymorphonuclear leukocytes have been implicated in the development of the "no-reflow" phenomenon after focal cerebral ischemia and reperfusion. To further understand the role of granulocytes in microvascular occlusions, the responses of the granulocyte-endothelial cell adhesion molecules P-selectin and intercellular adhesion molecule-1 during middle cerebral artery isch...
متن کاملInhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملPolymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons.
BACKGROUND AND PURPOSE Microvascular perfusion defects may accompany sustained occlusion and subsequent reperfusion of the middle cerebral artery; however, the nature of such "no-reflow" defects remains unclear. METHODS In the absence of antithrombotic pretreatment, we documented lenticulostriatal microvascular flow integrity following 3-hour middle cerebral artery occlusion and 1-hour reperf...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملAttenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat
Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 23 5 شماره
صفحات -
تاریخ انتشار 1992